53rd International Conference on Parallel Processing

Gotland, Sweden - August 12-15, 2024

During the Artifact Evaluation Stage, all the computational artifacts associated with the paper, such as software, datasets, or environment configuration required to reproduce the experiments are assessed. The goal of Artifact Evaluation is to award badges to artifacts of accepted papers. We base all badges on the NISO Reproducibility Badging and Definitions Standard. In 2023, the assigned badges will be per ACM Reproducibility Standard. 

Authors of papers must choose to apply for a badge a priori during the AE phase. Authors can apply for one or more of the three kinds of badges that we offer. The badges available are Artifacts Available, Artifacts Evaluated-Functional, and Results Replicated. Please, note that they are incremental: If one applies for Artifacts Evaluated Functional, this also includes Artifacts Available. If one applies for Results Replicated, this also includes the other two badges. The type of badge and the criteria for each badge is explained next. To start the Reproducibility Evaluation Process, authors must provide links to their computational artifacts. SUCH LINKS MUST BE DOIs. Please note that a link to a tagged GITHUB repository is not valid. 

An artifact must be accessible via a permanently persistent and publicly shareable DOI (What is a DOI? Check this out) on a hosting platform that supports persistent DOIs and versioning (for example, DataPort, Dryad, FigShare, Harvard Dataverse, or Zenodo). Authors should not provide links or zipped files hosted through personal webpages or shared collaboration platforms, such as Next Cloud, Google Drive, or Dropbox. 

Zenodo and FigShare provide an integration with GitHub to automatically generate DOIs from Git tags. Therefore, it is possible to host code using version control provided by GitHub and describe the artifact using Zenodo or FigShare. Please, observe that Git itself (or any other control versioning software) does not generate a DOI, and it needs to be paired with Zenodo or FigShare. 

The badges for the 2024 Reproducibility Initiative will be announced shortly.